Comments on the
Digital Preservation Repository

Survey of Digital Preservation Systems
Karim B. Boughida and Sally Hubbard
(The Getty Research Institute)

Daniel Davis

DLF Spring Forum 2007: Pasadena, California
April 24th, 2007
Emergence of Digital Preservation Archives

- Most are small institutional or individual implementations
- Emergence of Large Gov’t TDR/DPS
 - National Archives and Records Administration
 - Electronics Records Archive
 - Centralized / COTS Core / FOSS Components
 - Government Printing Office
 - Future Digital System
 - Centralized / COTS Core / FOSS Components
 - National Oceanic and Atmospheric Administration
 - Comprehensive Large Array Stewardship Systems
 - Replaces an existing custom production TDR
 - National Institutes of Health
 - National Health Records System
 - Decentralized / To Be Determined / Problematic Business Model
- Corporate DPS are showing up
 - Long tail media value and regulatory compliance
Hard Decisions

- There are always finite resources
 - You cannot keep everything
 - You cannot preserve everything to the same level of service
 - Good, Better, Best approach?
- To what degree do you use commercial products (COTS) and where?
 - COTS at the core may create vendor lock-in (watch indexes)
 - Reduce up-front risk and enable faster development
 - May hide key metadata needed for preservation
 - Are often not well designed to act as components in a service oriented architecture
 - Often lack key preservation features and must be adapted
- To what degree should you use (Free) Open-Source Software (FOSS)?
 - It is not really free but it is cheaper
 - Can enable control of your core mission
 - Most are far from mature
 - Lots of proof-of-concept, few products with sustainable business models
Preservation

• Geographical dispersion is essential (and a way to find the copies)
• COTS products are now supporting integrity and authenticity checks
• COTS products have been supporting media migration for some time
• Format migration is now being introduced
 – COTS and FOSS for format identification, validation, conversion
 – No completed fine-grained format registry for on-line use
• Other than print-equivalent formats and static-web sites, preserving essential characteristics is a work-in-progress
 – e.g. storing algorithms with scientific data sets
• A single, uniform item-level registry/resolver system is unlikely soon
• Innovative authoring and access systems usually ignore preservation
• Links between information must also be preserved
• A comprehensive ready-to-use system (overarching architecture) has not yet emerged but XML and service orientation is the best bet
• A homogeneous (mono-culture) implementation is guaranteed to fail.
Items to consider

• If you look hard enough a DPS is needed as a component of any large enterprise system but rarely the whole purpose.

• Institutional questions (NARA-RLG TDR Checklist)
 – What is the sustaining business model?
 – What is the mission, policies, and requirements of the system?
 – What is your tolerance for risk?

• All things will change over a long enough period.
 – Architect for continuous change and non-uniformity
 – The system will never be finished
 – But the information must endure

• All things fail over a long enough period

• There a great economies of scale in infrastructure but little in creativity

• For the foreseeable future it will be a patchwork due to the human nature of funding, competition, cooperation and collaboration
Goals for enabling users

1. Creation and publication of new forms of “information units”

2. Services to better enable business processes

3. Knowledge environments that captures semantic and factual relationships among information units

4. Promote information re-use and contextualization

5. Facilitate collaborative activity and capture information that is created as a byproduct of it

6. Preserve the information for future use

Requirements Tradeoffs

- Access
- Infrastructure
- Trust
- Lifecycle
Overlap between Web and the Trusted Repository Paradigms

• Both the Web and Trusted Repositories are content-driven systems with overlapping needs
 – Content Creation and Capture, Collaboration
 – Content Storage differs on time scale optimizations
 • Content managers – Creation and Collaboration
 • Trusted (preservation) repositories (archives) – Long term storage, integrity, and preservation
 – Both require information lifecycle management capabilities
 – Support for other services and applications
• Both need a well-defined trust and security model
The Repository Dilemma

- Must implement a trusted core because:
 - Trust Model
 - All repositories have a significant trust requirement
 - Low fault tolerance for repository content custodianship
 - Specifiable (policy-driven) fault tolerance for mediation capabilities
 - Create (Ingest), Read, Update, and Delete must be transactional
 - Architectural Fit
 - Fit as a component in a SOA
 - Clustering, High-Availability, Transactions, Messaging
 - Federation
- *But must also support the Web paradigm*
Key Trends

• While Web 2.0 is a major implementation trend among emerging applications
• We can combine the Web, Web 2.0, WOA and SOA into an integrated system that leverages the best qualities of each while providing trusted persistence

• Move volatility into data and technology stability into code and content.
• Empower stakeholders with the (controlled) freedom to responsibly use, study, copy and change the system.
• Embrace consumers as an integral part of the application and content development process.
• Embrace Web mashups as important model to create composite enterprise applications and opportunistic user applications.
• Use SOA to create composite services where high reliability and security is needed.
• Add a preservation architecture as an overlay to Web/Internet architectures.
• Add preservation capabilities as services.