Machine Actionable METS Profiles

DLF Spring Forum 2005

Corey Keith
ckeith@loc.gov
Goals

- What we have?
 - Ideas for expressing METS profiles in machine actionable ways
 - Simple prototype tools which are profile aware

- Goal
 - Take profiles to the next step
 - Fuel the discussion. Lots of people thinking about this problem.
 - Standardize expression
 - Share development effort in tool building
Roadmap

- Current Situation
- Making METS Profiles machine readable
- Sample validation tool
- Thoughts & Questions
METS Profiles
Current Situation

- Only in prose form
- Standardized container for documentation
- Requires interpretation by human
- No way to validate
 - Conformance still open to interpretation
METS Profiles

- Profiles are Good
 - Actually getting some guidance on METS usage.
 - Basis for institutional exchange of digital objects
 - Contract

- Fix METS Weaknesses
 - Flexibility double edge sword
 - Can do anything in METS
 - Encode same object many different ways
 - Little guidance and standardized practice
 - Descriptive metadata in structMap
Needs

- Take prose and make the computer understand
 - Do not have natural language processing yet!
- Machine actionable expression of the profile
- Subject matter experts write METS profiles in prose
- Developers/technologists express the prose in a machine actionable way
But why?

- Why create yet another typing language?
 - Specific needs not covered
 - Similar to XSD, RelaxNG, etc.
 - Want to create tools that are aware
 - End result will draw the best features from other data typing systems

- Why not schematron?
 - Flexible assertion based language
 - Only validation
 - Difficult to reinterpret for other uses
Holy grail

- XML Schema based editor
 - XML Schema is tough to implement
- Still does not solve our problems due to flexibility inherent in METS
- METS Editor not efficient for production
- XML Schema does not handle attribute oriented context of structMap
What’s possible?

- Validation
 - Production – Q/A
 - Interoperability
- Creation tools
- Object editors
- Input forms
- Repository data models
- Dissemination tools
Profile Aware

- Applications which support all kinds of objects
 - Validators
 - Digital Object Viewers
 - Repository Ingest
- Generic implementations
 - Added intelligence from use of profiles
 - DIV typing provides structural clues
- Intelligent pageturning
 - Not limited to display all of the images in one object
 - Get all “pages”
 - Grouping by section
- Reuse of type standardized vocabularies within structMap pays off
Profile Specific

- Applications which support specific profiles
 - lc:sheetMusic
 - lc:compactDisc

- Highly customized for particular profile
 - Not going to try to display a website object with a sheet music viewer

- Repository to Repository communication for institutional projects
div TYPE Vocabularies

- Namespaces and Qualified Names
 - xmlns:cd="http://www.loc.gov/mets/profiles/compactDisc"
 - <mets:div TYPE="cd:disc"/>
 - <mets:div TYPE="cd:track"/>

- Mixing different vocabularies in profiles
 - cd:track, loc:image

- Avoid name collisions
 - bk:page vs. sm:page
 - loc:image vs. cdl:image

- Namespaces enable versioning of type vocabularies

- Opportunity for standardization
 - METS Editorial Board endorsed vocabularies

- We don’t have a format for expressing them outside of the profiles yet…
Qualified Names

- Encourage the using the same prefix used in the profile
 - `xmlns:cd="http://www.loc.gov/mets/profiles/compactDisc"
 - `<mets:div type="cd:track">`
 - `xmlns:c123="http://www.loc.gov/mets/profiles/compactDisc"
 - `<mets:div type="c123:track">`

- String compare TYPE attributes easily with XSLT and other tools without resolving namespace prefix

- Schema aware XSLT 2.0 processors may support functions to expand qualified names
 - Change METS schema DIV type to QNAME
What we have

- Straw-man xml scheme for expressing METS profile requirements
 - Structmap/Div typing
- Prototype validation framework
 - Feasibility test for profile work
Current Features

- Expressed in XML
 - Transformable
- div typing
- ID/IDREF linking
- Structmap oriented

Planned features
- Metadata requirements beyond XSD
 - Required elements
 - Controlled vocabularies
ID/IDREF linking

- Confusion where to link from structMap
 - `<mets:div TYPE="cd:compactDiscObject" DMDID="x123"/>
 - Where do you link?
 - mets:dmdSec
 - mets:mdWrap
 - mods:mods
 - mods:relatedItem
Metadata Requirements

- Extending/restricting xml schema is difficult
- Especially per class of objects (per profile)
- Lots of extension schema
- Why not put these requirements in the METS Profile?
- soundRecording profile
 - Restrict value of mods:typeOfResource
 - sound recording-musical
 - sound recording-nonmusical
Mechanics
a step towards making profiles actionable

- XML document with div TYPE’s from METS as elements
 - `<mets:div TYPE=“sp:simplePhotoObject”>`
 - `<mets:div TYPE=“sp:simplePhoto/”>`
 - `/mets:div`
 - becomes
 - `<sp:simplePhotoObject>`
 - `<sp:simplePhoto>`
 - `/sp:simplePhotoObject>`
Simple Structmap Example

- PROFILE
 <sp:simplePhotoObject
 pr:name="lc:simplePhoto"
 pr:minOccurs="1"
 pr:maxOccurs="1">
 <sp:simplePhoto
 pr:minOccurs="1"
 pr:maxOccurs="1">
 <sp:photo
 pr:minOccurs="1">
 <sp:side
 pr:minOccurs="0"
 pr:maxOccurs="2"/>
 </sp:photo>
 </sp:simplePhoto>
 </sp:simplePhotoObject>

- METS Document
 <mets:structMap>
 <mets:div
 TYPE="sp:simplePhotoObject"
 DMDID="MODS1">
 <mets:div TYPE="sp:simplePhoto">
 <mets:div TYPE="sp:photo">
 <mets:fptr FILEID="FN10027"/>
 <mets:fptr FILEID="FN1005F"/>
 </mets:div>
 </mets:div>
 </mets:div>
 </mets:structMap>
Linked Descriptive Metadata Example

<sp:simplePhotoObject pr:name="lc:simplePhoto" pr:minOccurs="1" pr:maxOccurs="1">
 <pr:metadata-ref type="descriptive" required="true">
 <pr:metadata name="mods:mods" pr:minOccurs="1" pr:maxOccurs="1">
 <pr:metadata name="mods:titleInfo" pr:minOccurs="1" pr:maxOccurs="1">
 <pr:metadata name="mods:title" pr:minOccurs="1" pr:maxOccurs="1">
 <pr:text required="true"/>
 </pr:metadata>
 </pr:metadata>
 </pr:metadata>
 </pr:metadata-ref>
</sp:simplePhotoObject>
<mets:structMap>
 <mets:div TYPE="sp:simplePhotoObject"
 DMDID="MODS1">
 <mets:div TYPE="sp:simplePhoto">
 <mets:div TYPE="sp:photo">
 <mets:fptr FILEID="FN10027"/>
 <mets:fptr FILEID="FN1005F"/>
 </mets:div>
 </mets:div>
 </mets:div>
 <mods:mods ID="MODS1"
 version="3.0">
 <mods:titleInfo>
 <mods:title>[Gerry Mulligan and Mel Torme - 1978]
 </mods:title>
 </mods:titleInfo>
 ...
 </mods:mods>
</mets:structMap>
<cd:compactDiscObject pr:minOccurs="1" pr:maxOccurs="1">
 <pr:metadata-ref type="descriptive" required="true" direct="false">
 <pr:metadata name="mods:titleInfo" pr:minOccurs="1">
 <pr:metadata name="mods:title" pr:minOccurs="1"/>
 </pr:metadata>
 </pr:metadata-ref>
 <cd:text pr:minOccurs="0"/>
 <cd:images pr:minOccurs="0"/>
 <cd:disc pr:minOccurs="1">
 <cd:text pr:minOccurs="0"/>
 <cd:images pr:minOccurs="0"/>
 <cd:track pr:minOccurs="1">
 <pr:metadata-ref type="descriptive" required="true">
 <pr:metadata name="mods:relatedItem" pr:minOccurs="1" pr:maxOccurs="1">
 <pr:metadata name="mods:titleInfo" pr:minOccurs="1"/>
 </pr:metadata>
 </pr:metadata-ref>
 </cd:track>
 </cd:disc>
 </cd:disc>
</cd:compactDiscObject>
relatedItem Example

<mods:mods ID="MODS" version="3.0">
 ...
</mods:mods>

<mets:div TYPE="cd:disc" DMDID="DMD_disc01_tr001"/>
 ...
</mets:div>

<mods:relatedItem type="constituent" ID="DMD_disc01_tr001">
 <mods:titleInfo>
 <mods:title>Allegro Maestoso</mods:title>
 </mods:titleInfo>
 <mods:physicalDescription>
 <mods:extent>15:51</mods:extent>
 </mods:physicalDescription>
</mods:relatedItem>
</mods:mods>
Profile Aware Validation Tool

- Implemented with pipelined XSLT’s in Apache Cocoon
Sample Validation Report

Schematron Report

Generated Schematron Schema

StructMap Check

- Expected a minimum 1 occurrences of linked metadata of type mods:relatedItem at ID.
- Expected a minimum 1 occurrences of linked metadata of type mods:titleInfo at ID.

```xml
<mets:div TYPE="cd:compactDiscObject" DMDID="MODS1">
  <mets:div TYPE="cd:disc">
    <mets:div TYPE="cd:track"/>
  </mets:div>

  <mets:div TYPE="cd:disc">
    <mets:div DMDID="DMD_disc01_tr001" ID="disc01_tr001" TYPE="cd:track">
      <mets:div TYPE="cd:audio">
        <mets:fptr FILEID="FN10001"/>
        <mets:fptr FILEID="FN10202"/>
        <mets:fptr FILEID="FN10002"/>
      </mets:div>
    </mets:div>

    <mets:div DMDID="DMD_disc01_tr002" ID="disc01_tr002" TYPE="cd:track">
      <mets:div TYPE="cd:audio">
        <mets:fptr FILEID="FN10003"/>
        <mets:fptr FILEID="FN10304"/>
        <mets:fptr FILEID="FN10305"/>
      </mets:div>
    </mets:div>
  </mets:div>
</mets:div>
```

Profile Aware Display

- Common vocabulary of div TYPE’s
- Reuse UI “components”
 - loc:page
Repository Data Models

- div TYPE’s correlate with classes in an object oriented repository architecture
 - FEDORA

- Ingestion
 - Atomization into AIP’s based off of div TYPE’s from SIP’s
 - `<mets:div TYPE="loc:image"/>` becomes a separate object
National Digital Newspaper Project

- Goal is to have partner institutions submit METS based SIP’s
 - Newspapers
 - Issues
 - Reels
- METS Profiles serve as contracts and enable validation of SIP’s before ingestion
- div TYPE facilitate atomization during the ingestion process to a FEDORA repository
 - Model Objects: Newspapers, Reels, Issues, Pages
 - Content Objects: Image, Text
Future Thoughts

- **Syntax**
 - RelaxNG like syntax for cardinality

- **Documenting type vocabularies which can be used across profiles**

- **METS Specific**
 - Is there a generic way to solve this across a broader set of digital object implementations

- **Best way to get others involved?**
 - Wiki