A Fresh Look at the Reliability of Long-term Digital Storage

Mema Roussopoulos
Harvard University
November, 2006
The need for long-term digital storage

- Emerging web services
 - Email, photo sharing, web site archives
- Regulatory compliance and legal issues
 - Sarbanes-Oxley, HIPAA, intellectual property litigation
- Many other fixed-content repositories
 - Scientific data, intelligence info, libraries, movies, music
- Digital objects versus their analog counterparts
Why is long-term storage hard?

- Large-scale disaster
- Human error
- Media faults
- Component faults
- Economic faults
- Attack
- Organizational faults
- Media/hardware obsolescence
- Software/format obsolescence
- Lost context/metadata

Long-term content suffers from more threats than short-term content.
Why is long-term storage hard?

- Large-scale disaster
- Human error
- Media faults

- Component faults
- Economic faults
- Attack
- Organizational faults

- Media/hardware obsolescence
- Software/format obsolescence
- Lost context/metadata
Why is long-term storage hard?

- Large-scale disaster
- Human error
- Media faults

- Component faults
- Economic faults
- Attack
- Organizational faults

- Software: uninstalling required driver
- Infrastructure: turning off air conditioning system

- Media/hardware obsolescence
- Software/format obsolescence
- Lost context/metadata
Why is long-term storage hard?

- Large-scale disaster
- Human error
- Media faults
- Component faults
- Economic faults
- Attack
- Organizational faults

- Sudden irrecoverable loss: DISK CRASH
- Bit rot: gradual accumulation of bit errors
- “100-year” CD myth
- Disk sectors gone wrong, firmware bugs, vibration…

Media/hardware obsolescence
Software/format obsolescence
Lost context/metadata
Why is long-term storage hard?

- Large-scale disaster
- Human error
- Media faults
- Component faults
- Economic faults
- Attack
- Organizational faults

- Hardware: power loss, fried controller card
- Software: disk firmware bugs affect data
- Network failures: ingestion of data may fail
- External license servers/companies
- Domain names vanish/reassigned
Why is long-term storage hard?

- Large-scale disaster
- Human error
- Media faults
- Component faults
- Economic faults
- Attack
- Organizational faults
- Software/format obsolescence
- Lost context/metadata

GOT MONEY????
Why is long-term storage hard?

- Large-scale disaster
- Human error
- Media faults
- Component faults
- Economic faults
- Attack
- Organizational faults
Why is long-term storage hard?

- Large-scale disaster
- Human error
- Media faults
- Component faults
- Economic faults
- Attack
- Organizational faults

- Organizations come and go
- No data “exit strategies”

- Media/hardware obsolescence
- Software/format obsolescence
- Lost context/metadata
Why is long-term storage hard?

- Large-scale disaster
- Human error
- Media faults

- Component faults
- Economic faults
- Attack
- Organizational faults

- Media/hardware obsolescence
- Software/format obsolescence
- Lost context/metadata
What to do?

- Create lots of replicas of content to be preserved
- Increase probability that at least one replica will survive in long run
- Simple, intuitive, necessary but…
 - Not sufficient
Why is replication insufficient?

- Assumption of replica independence
 - e.g., a large-scale disaster wipes out all nearby replicas
 - Geographic dispersal not enough
 - Need administrative independence, component independence, etc.

- Assumption of fault visibility
 - Latent faults lurk subversively until data accessed
 - Archival workloads don’t access all data frequently
 - Accrue over time until too late to fix
Can we model long-term reliability?

- Abstract reliability model for replicated data
 - Applies to all units of replication
 - Applies to many types of faults
- Extend RAID model
 - Account for latent as well as visible faults
 - Account for correlated faults: temporal and spatial
- Simple, coarse model
 - Suggest and compare strategies (choose trade-offs)
 - Point out areas where we need to gather data
- See EuroSys 2006 paper [Baker et al]
Our current approach

- Start with two replicas, then add more
- Derive MTTDL of mirrored data in the face of
 - Both immediately visible and latent faults
- Data loss occurs
 - If copy fails before initial fault can be repaired
- Time between fault and its repair is
 - Window of Vulnerability (WOV)
Window of vulnerability
Temporal overlap of faults

Want detection time to be small
Data loss cases with 2 replicas

Overall probability = sum of each case
Example using the model

- How much does it help to shorten detection time?
- Portion of real archive (www.archive.org)
 - Monthly snapshots of web pages
 - 1.5 million immutable files
 - 1795 200GB SATA drives, “JBOD”
 - Mean time to visible (disk) failure: 20 hours
 - Almost 3 years of monthly file checksums
 - Mean time to latent fault 1531 hours
Scenario: audited replicated archive

Reliability vs. Auditing

- No auditing
- No latent errors
- With auditing
- With disk exercise penalty

MTTDL (years) vs. Auditing interval (years)
Dynamic long-term architecture

- Large time-scale => Failure is inevitable
- Independent replicas
 - Geographic, administrative, platform
 - Gains from extra replication offset by correlations
- Inexpensive audit of content
 - Fix latent faults at all levels before they accrue
 - *Content must be accessible to do this cheaply!!*
 - Backup to high-latency off-line media is not a solution
 - Includes “repairing” endangered content/metadata
- Keeping data static requires a dynamic system!