This Presentation: http://libnet.ucsd.edu/nara/2005.04.15 DLF.ppt

Chris Frymann – cfrymann@ucsd.edu University of California, San Diego Libraries

> Digital Library Federation Meeting San Diego, California April 15, 2005

Grant from:

The National Archives and Records Administration (NARA)

Collaboration with:

San Diego Super Computer Center (SDSC)

Massachusetts Institute of Technology (MIT)

Primary Goals

Preservation

Reusable (ETL) procedures
 Extraction Transformation and Loading

Cross-collection discovery and access

The Collection

 200,000 35mm slides associated MARC records in local ILS

200,000 TIFF files20 MB / file

4 Terabytes

DSpace

Needs no introduction

SRB

Storage Resource Broker

Developed at:
San Diego Supercomputer Center

SRB

- Server software & programming interfaces (middleware)
- Enables applications that store and retrieve files
 to treat multiple and heterogeneous storage devices
 as a single logical resource
- Over the network this qualifies as "grid" technology

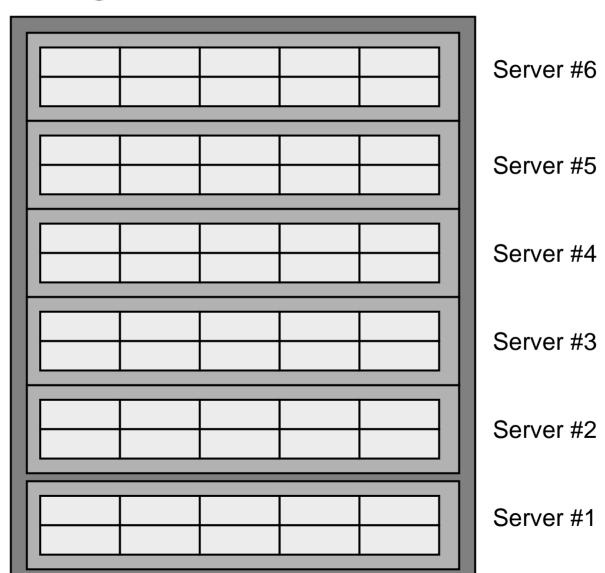
Basic Storage Resource

200 GB

Inexpensive commodity disk drive

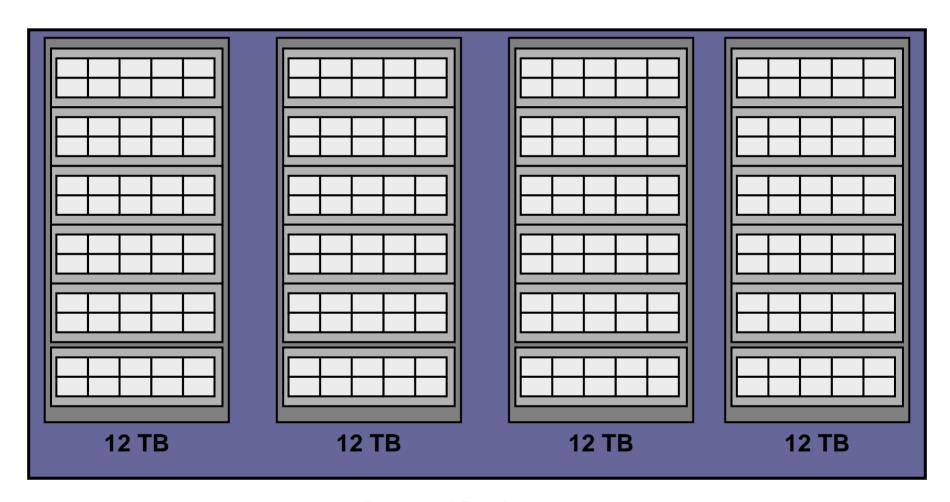
10 drives 2 Terabytes/box Grid Brick

	.2 TB					
	.2 TB					

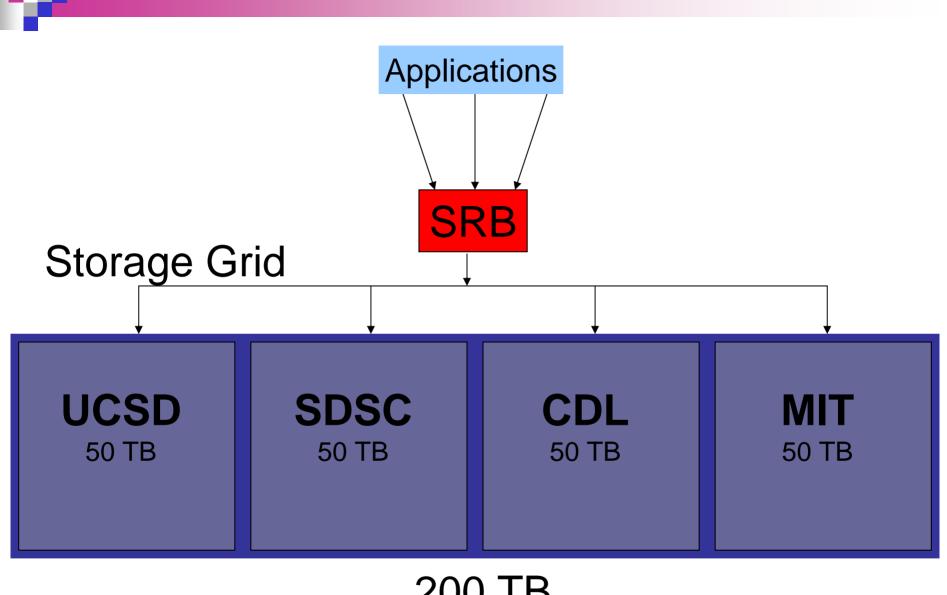

Rackmount Storage Server

SRB lets us treat it as a single logical resource

M


Single Logical Resource – 12 TB

Rack of Storage Servers Grid Bricks



Single Logical Resource ~ 50 TB

Room of Racks

200 TB Single Logical Resource

Approach

- Use SRB for
 - Economical storage
 - Grid-based replication
- Use DSpace for Digital asset discovery and access
- Modifiy Code to integrate DSpace and SRB
- Develop batch processes for ingesting into DSpace/SRB

Initial Focus on Preservation

Enabled us to think in terms of:

"Dark Archive"

☐ Asset Store

AIP Content Files Metadata Files SRB

The AIP requires us to address:

■ Metadata Encapsulation

□ File Naming

1

File Naming Requirements

- Generated Automatically
- Unique
- Semanticly opaque
- Bind content and metadata files
- Consistent with CDL approach
 - □ Archival Resource Key ARK

ARK Used for SRB File Naming

Every digital object

and all sub-components

assigned names with common ARK-base

Details of ARK-based File Naming in SRB

- Thanks to John Kunze for developing this approach
- General form
 - □ ark:/NAAN/Name/NAAN-Name-ServiceComponent.Vnnn.Format
- Where
 - □ NAAN = Name Assignment Authority Number
 - = 20775 for object named by UCSD
 - □ Name = ARK generated according to specified template
 - e.g. [bb] [7 random digits] [checksum character]
 - □ ServiceComponent = string identifying a part or aspect of the object
 - e.g. master, metadata-mets
 - Vnnn = version number; zero-padded positive integer of 3 or more digits
 - ☐ Format = mime-type format designator
- Example
 - ark:/20775/bb1234567k/20775-bb1234567k-master.v001.tif
 - ark:/20775/bb1234567k/20775-bb1234567k-metadata-mets.xml

ARKs Also Used in Implementing Actionable URLs

Every digital object

and all sub-components

assigned URL with common ARK base

Details of ARK Assignment in Actionable URLs

- Prefix
 - □ http://libraries.ucsd.edu/
- Actionable reference to:
 - □ Object (item)
 - http://libraries.ucsd.edu/ark:/20775/bb1234567k
 - □ Component file (bit stream)
 - http://libraries.ucsd.edu/ark:/20775/bb1234567k/ 20775-bb1234567k-master.v001.tif

Integration of DSpace & SRB Introduces Multiple Layers of Name Indirection

- □ SRB
 - Physical
 - Logical
- DSpace
 - Physical name
 - Local handle
 - Global Handle

The AIP – Part II

Metadata encapsulation and the obvious choice is ...

M

METS

- Minimal mandatory metadata requirements ("low floor")
- Support for almost unlimited complexity ("high ceiling")
- Relational database independent
- File system oriented
- XML
- Required for ingestion into:CDL Digital Preservation Repository (DPR)

METS Profile

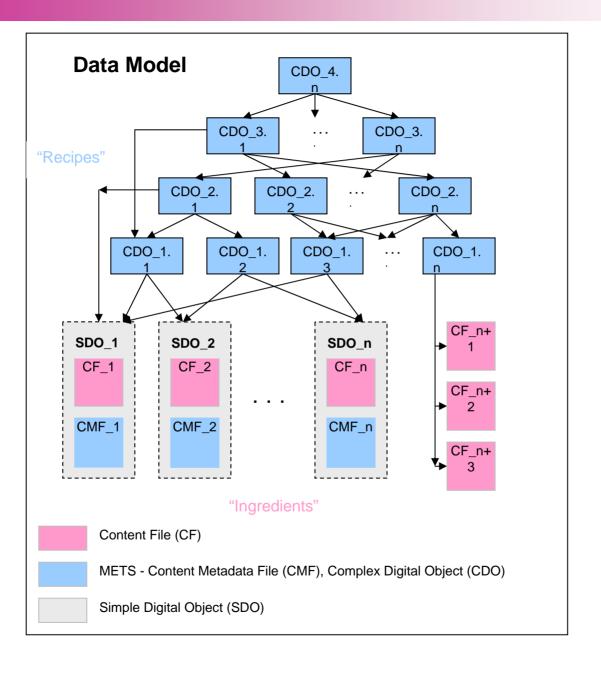
Developed and refined over many months

Used to submit objects to CDL DPR

Ready for registration at LOC

```
<?xml version="1.0" encoding="UTF-8" ?> <!-- edited by Bradley D. Westbrook, Digital Library Program, University of California, San Diego, With the
kind assistance of Rick Beaubien, Robert Dias, and Gabriela Montova -->
- <METS Profile xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"</p>
xsi:noNamespaceSchemaLocation="http://www.loc.gov/standards/mets/profile_docs/mets.profile.v1-1.xsd">
 <ur><URI LOCTYPE="URL">http://???.ucsd.edu/mets/profiles/UCSD Single Still Image Profile</URI></ur>
 <title>UCSD Single Still Image Profile</title>
 <abstract>UCSD digital objects composed of a single image use this METS profile. Multiple versions of the image may be included in a
METS record conforming to this profile, but only one version is required. The profile does not prescribe a file format for the version(s), but
it is suggested that the format of one file generally be of an archival quality, e.g., a tiff or high resolution jpeg.</abstract>
 <date>2005-01-21T11:42:31</date>
- <contact>
 <name>Digital Library Program Office</name>
 <address>Geisel Library, UC, San Diego</address>
 <email>DigitalLibraryProgram@ucsd.edu</email>
 </contact>
 <related profile RELATIONSHIP="controlled vocabularies for USE attribute values and TYPE attribute values taken from"</p>
URI="http://www.loc.gov/standards/mets/profiles/00000004.xml">Model Imaged Object Profile</related profile>
- <extension schema>
 <name>Metadata Object Description Schema (MODS)</name>
 <URI>http://www.loc.gov/standards/mods/v3/mods-3-0.xsd</URI>
 <context>mets/dmdSec/mdWrap/xmlData</context>
 <note>Used for descriptive metadata representing the object.</note>
 </extension schema>
- <extension schema>
 <name>NISOIMG</name>
 <URI>http://www.loc.gov/standards/mix/mix.xsd</URI>
 <context>mets/amdSec/techMD/mdWrap/xmlData</context>
 <note>Used for technical metadata about the characteristics, origin, and modification of the content file.</note>
 </extension schema>
- <extension schema>
 <name>METSRights</name>
 <URI>http://cosimo.stanford.edu/sdr/metsrights.xsd</URI>
 <context>mets/amdSec/rightsMD/mdWrap/xmlData</context>
 <note>Used for recording intellectual property rights.</note>
```

</extension_schema> - <description_rules>

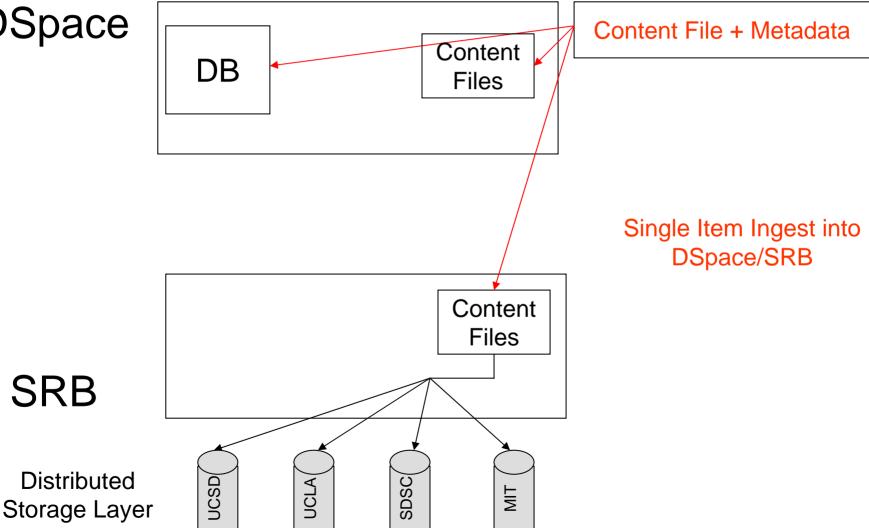

All applications of MODS in UCSD METS records adhere to the MODS User Guidelines published by the Library of Congress's Network Development and MARC Standards Office.

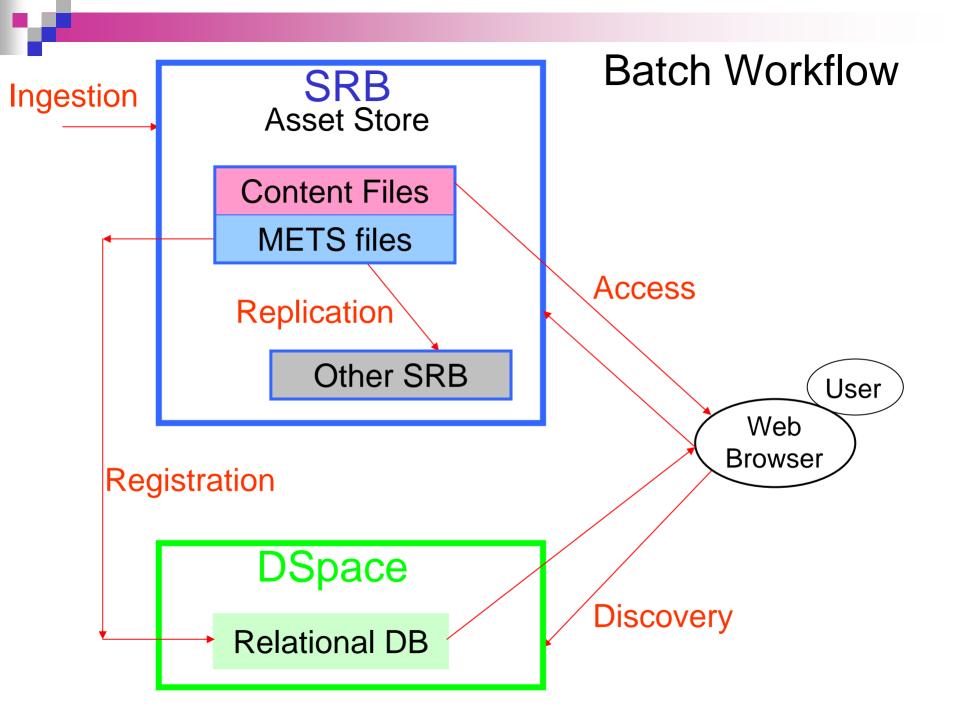
</description_rules>

Data Model

- Paired Content and Metadata Files with ARK-based names
- Metadata encoded in "standard" METS profiles
- Stand-alone METS files describing arbitrary levels of aggregation of lower level objects

DSpace/SRB Code Integration


 Replace DSpace file system calls with SRB access calls


Augment DSpace ItemImporter "register" SRB objects into DSpace

Single Item Workflow

DSpace

M

DSpace 1.3 Code Patches

March 17 - Submitted to Sourceforge

April 8 - Accepted by DSpace committers

Extraction Transformation and Loading (ETL) Processes

- Load data into file staging area:
 - Extracted MARC record data from ILS
 - Vendor digitized TIFF files from 38 120 GB hard drives
- Create temporary staging database and insert all data needed to generate METS files:
 - MARC record data
 - □ Technical metadata from digitization vendor spreadsheets
 - Checksums
 - ARK names generated from NOID
- Use staging database to control repetitive transfer of objects to permanent Asset Store (SRB)
 - □ Transfer TIFF file to SRB and assign it an ARK-based name
 - ☐ Transfer METS file to SRB and assign it a paired ARK-based name
 - Update record status fields in staging database as steps are completed
- Use XSLT transformation to generate "DSpace Qualified Dublin Core" files from METS
- Register DS QDC files into DSpace
 - Use modified DSpace ItemImporter
 - Achieves results of Single item retrieval modifications to standard DSpace
- Use SRB-to-SRB copy to replicate at SDSC
- Ingest into CDL DPR
 - Common ARK-based naming
 - □ Possible SRB-to-SRB replication
- Continuous synchronization

Load Data into File Staging Area

MARC records extracted from ILS

38 120 GB hard drives
 with vendor digitized TIFF files

Load Staging Database

Includes everything needed to generate METS files:

- MARC record data
- □ Technical metadata from digitization vendor
- □ Checksums
- □ ARKs minted from John Kunze's NOID script

Transfer Data to Asset Store

- Staging database governs repetitive transfer of objects to permanent Asset Store (SRB)
 - Transfer TIFF file to SRB, assign ARK-based names
 - □ Transfer METS file to SRB, assign paired ARK-based name
 - □ Update record status fields in staging database
 - □ This transfer took nine days

Transfer Metadata to DSpace

 Use XSLT transform to generate "DSpace Qualified Dublin Core" files from METS

Use ItemImporter to register SRB-based AIP

M

Last Step Preservation Copies

Do SRB-to-SRB replication at SDSC

- Do replication to CDL DPR
 - □Java API
 - □ Possible SRB-to-SRB copy

Summary

 200,000 digital objects preserved, discoverable and accessible

- ☐ Asset Store with METS/ARK-based AIP
- □ Repurposeable automated workflow processes
- DSpace enabled discovery and retrieval
- □ SRB enabled storage and grid integration

http://libnet.ucsd.edu/nara

This presentation:

http://libnet.ucsd.edu/nara/2005.04.15_DLF.ppt