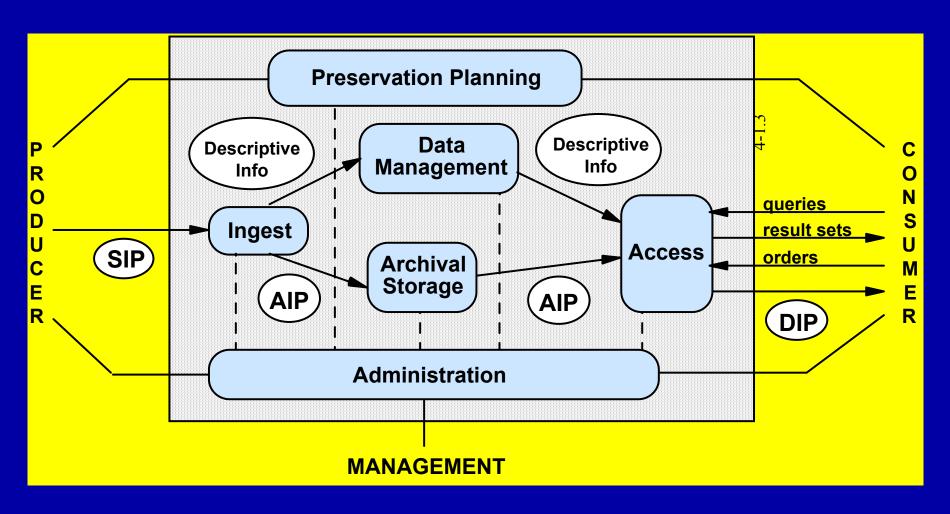
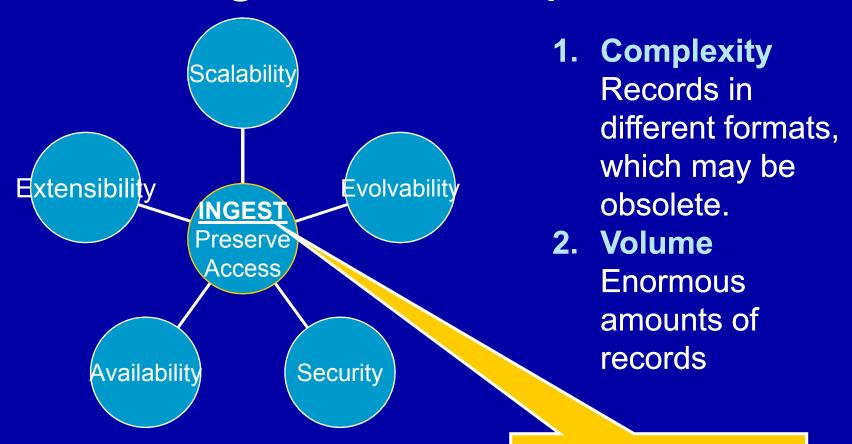
Performance Study of Digital Object Format Identification & Validation Tools

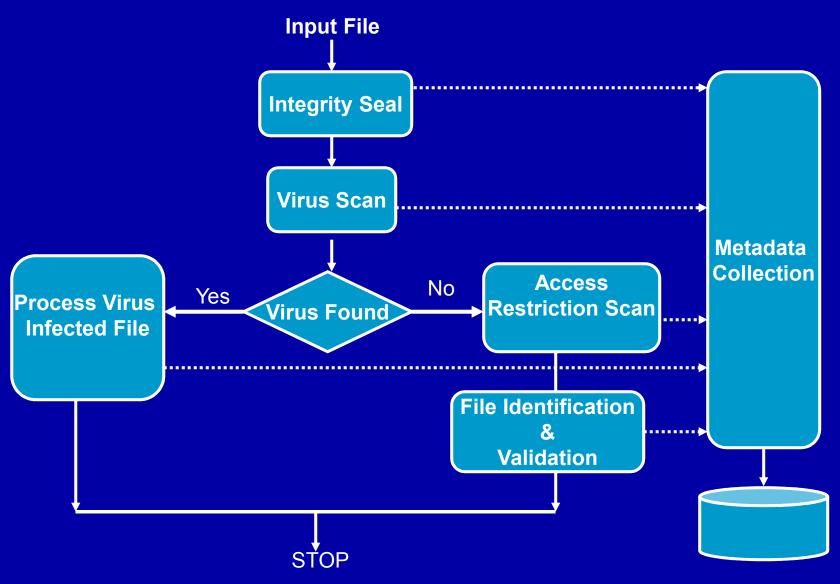


DLF Fall 2008 Forum Nov 11-14, 2008 Quyen Nguyen
ERA Systems Engineering
National Archives & Records
Administration


Agenda

- Background
- Format Identification Tools
- Experiments
- Analysis
- Related Work
- Summary

OAIS Model for ERA

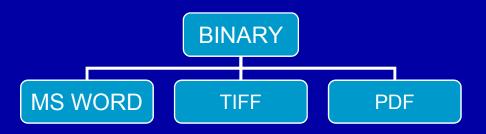

Challenges and Requirements

Format Identification

Ingest Verification

Ingest Process Orchestration

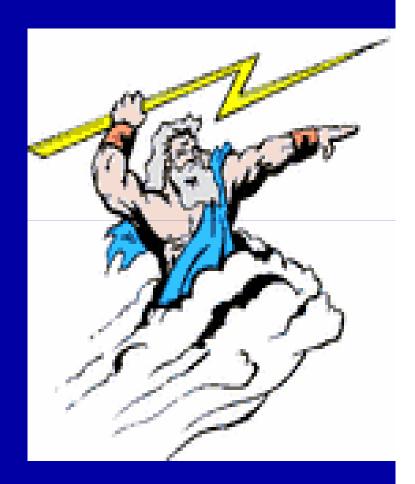



Agenda

- Background
- Format Identification Tools
 - Experiments
 - Analysis
 - Related Work
 - Summary

File Format

- Real issue: file extension unreliable to determine the format of a digital object
 - depends on end-user or application.
- Format identification. Microsoft Word 2003, Acrobat 8 PDF, etc.
- Format validation. Once a format f has been identified for a digital object X, does X really conform to format f. For example, an XML document may be well-formed or not.

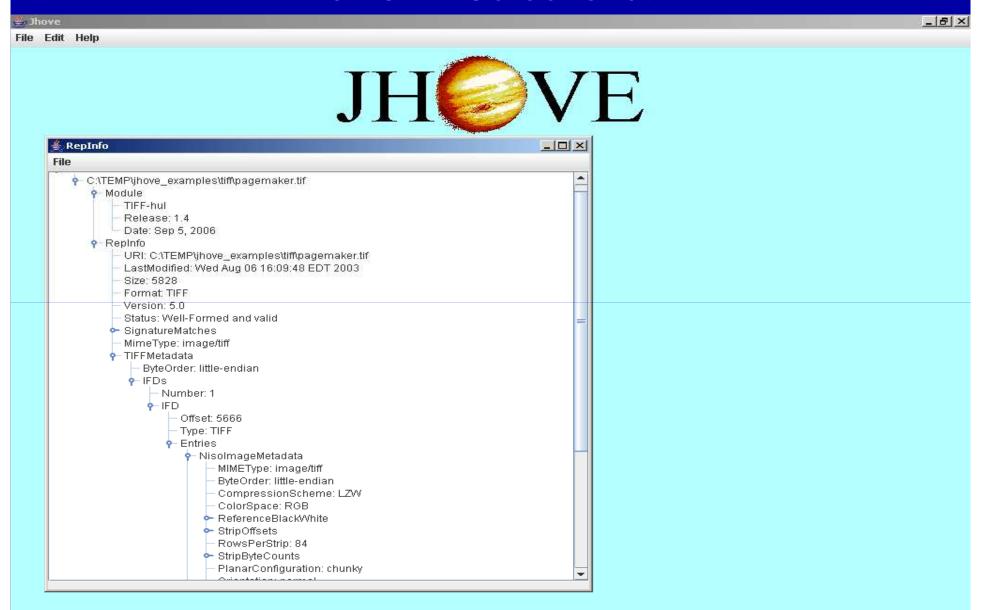


Identification & Validation Tool

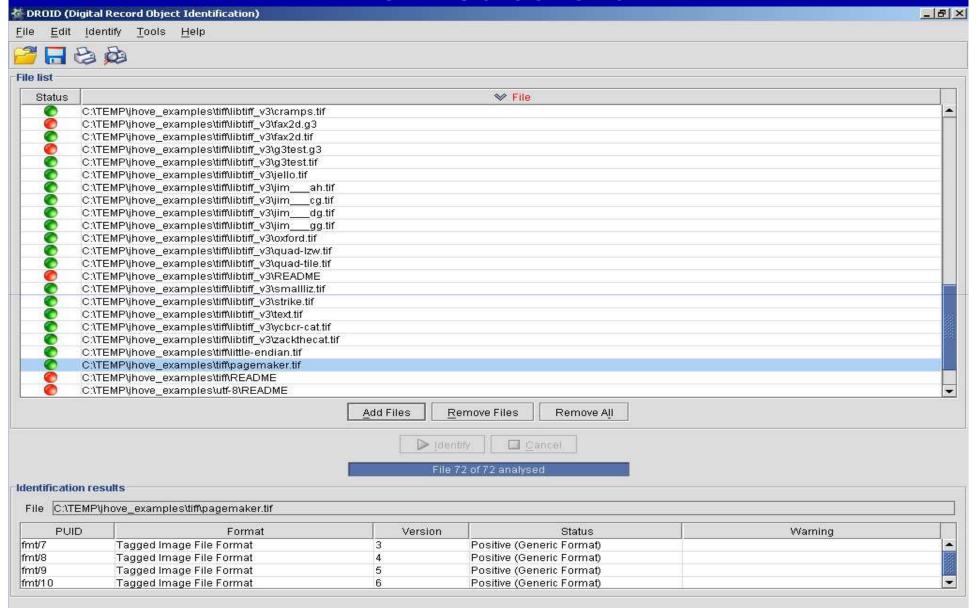
- Several institutions have developed such tools.
- A tool performs following task:
 - File → Input.
 - Find matched signature.
 - Output → Metadata:
 - File format: PDF, JPEG, Microsoft Word, etc.
 - Version number of application used to create digital object.
- Sounds simple yet difficult

JHOVE

- JSTOR/Harvard Object Validation Environment, developed by JStor (Journal STORage) and Harvard University Library.
- Set of modules called "handlers", each of which is responsible for a file type
- Traverse set of "handlers" until one is found that can positively identify the type of input file.
- JHOVE can output rich metadata. Technical metadata such as MIX data elements for image files part of output.



DROID


- Digital Record Object Identification developed by United Kingdom National Archives.
- Based on PRONOM registry of file signatures specific to file types.
- At runtime, the content of the registry can be downloaded as an XML file, and cached in the DROID process.
- Traverse signature file containing cached content of PRONOM.
- DROID process will try to match one by one the signatures in the signature file against the one in the input file

JHOVE Screenshot

DROID Screenshot

Agenda

- Background
- Format Identification Tools
- **Experiments**
 - Related Work
 - Analysis
 - Summary

Experimentation

- Environment
 - Intel ® CPU T2500 @ 2.0 GHz, 2.0 GHz, 2.0 GB of RAM.
 - Microsoft Window XP Professional Version 2002 Service Pak 2.
 - Runtime JVM comes with Sun JDK 1.6.0_01-b01.
 - java –Xms1024m –Xmx1024m
 - Jhove version 1.1 2006-02-13
 - DROID v1.1
- Inserted simple tracing code
 - System.currentTimeMillis()
 - Runtime.totalMemory() Runtime.freeMemory()
- Metrics
 - Execution Time (ms): time-jhove, time-droid.
 - Heap Size (KB): heap-jhove, heap-droid.
- 50 measurements per collection or file.
- Statistical tools: Microsoft Excel and Stats4U.

Data Corpus

- Corpus C1: examples shipped with JHOVE.
 - 112 files whose size ranges from 1 KB to 22 MB
 - most of the files are less than 100 KB.
 - Files are grouped into subdirectories according to their document types: ASCII, GIF, HTML, JPEG, PDF, TIFF, WAV, and XML.
 - HTML subdirectory also contains GIF and JPEG images in the HTML pages.

Data Corpus (2)

- Corpus C2: 24 collections of documents used in NARA research lab.
- Typical documents coming to the public archives
 - Photos from National Park Service
 - Documents related to Katrina
 - Case files of U.S. District Courts
 - White House press releases,
 - Environmental maps from EPA
 - 1280 files whose sizes range from 1 KB to 136 MB.
 - Notably, document types are more varied.
 - In addition to the types found in C1 set, one can find audio, video clips files, geospatial files, statistical files, etc.

Statistical Analysis

- Perform T-Test using Microsoft Excel.
- Execution Time.
 - Null Hypothesis H0: time-droid = time-jhove.
 - Alternative Hypothesis H1: time-droid > time-jhove.
- Heap Size
 - Null Hypothesis H0: heap-droid = heap-jhove.
 - Alternative Hypothesis H1: heap -droid < heap -jhove.
- To conclude H0 with confidence, we want t-Stat be small, and P(T<=t) close to 1.
 - Watch for sign of t-Stat.

Experiment 1

Corpus C1.

Execution Time:

- From T-test, 99% confidence level, time-droid is significantly greater than time-jhove
 - t Stat = 1487.29;
 - $P(T \le t)$ one tail = 9.42E-182

Heap Size:

- From T-test, 99% confidence level, heap-droid is significantly less than heap-jhove
 - t Stat = -34.50825771
 - $P(T \le t)$ one tail = 2.4239E-36

Experiment 2

Corpus C2.

Execution Time:

- From T-test, 95% confidence level, time-jhove is significantly greater than time-droid
 - t Stat = -5.48;
 - $P(T \le t)$ one tail = 2.51E-08
- DROID generated less heap memory than JHOVE

Data Type Impact

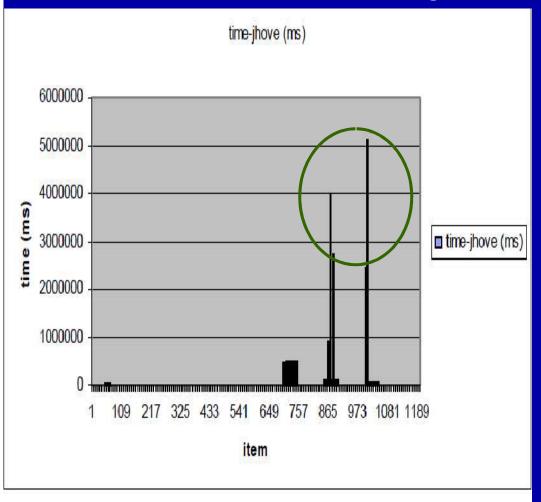
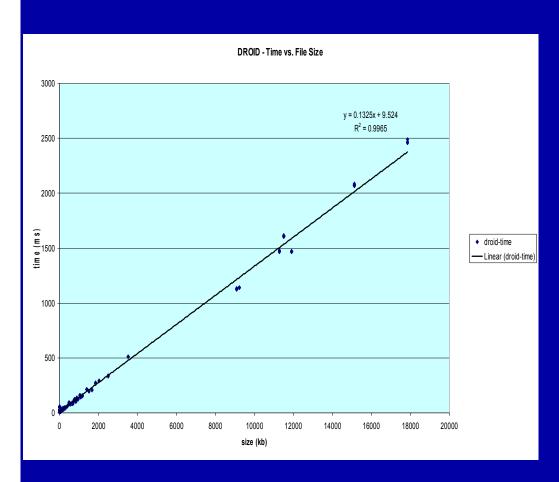


Figure 1. time-jhove vs. sample data points.

- Two collections -around 865th and 1000th data points caused a dramatic increase in time-jhove
 - Contain mostly VRML (Virtual Reality Modeling Language) files, which are essentially in ASCII text, but can be interpreted for display.


Experiment 3

- Tie.
- Corpus: C2b = C2 {2 VRML collections}
- From T-test, 95% confidence level, time-droid is significantly greater than time-droid
 - t Stat = 0.057
 - $P(T \le t)$ two tail = 0.95
- No difference on Heap size.

Experiment 4

- Corpus C2 re-arranged by types and sizes.
- Use Stat4U
- 3-way ANOVA with factors: A=Tool; B=Type;
 C=Size (2 levels only)
 - All 3 factors and interactions are significant with 95% confidence level.
 - Tool factor explains only 0.9 % of the variation.

Linear Regression: Size-Time

- Corpus C2.
- Only find linear regression for timedroid:

time-droid = 0.13 * size + 9.52

- 100 TB → ~ 5 months.
- Information for sizing:
 - Computing resources
 - Parallelism

Agenda

- Background
- Format Identification Tools
- Experiments
- ➡ Analysis
 - Related Work
 - Summary

Analysis

- Statistically, JHOVE and DROID perform equally well for format types that JHOVE can identify.
 - Qualitatively, JHOVE generated metadata is richer.
- For types that JHOVE cannot validate, the performance decreases drastically compared to DROID.
 - Easy case: if JHOVE finds that a record is binary, it just responds with a general identification, e.g.
 ByteStream.
 - But some ASCII cases such as VRML may throw it off.

Integrated Approach

- Two-phase approach for File Identification and Validation:
 - Pass a file through DROID to quickly identify its type.
 - If the type is found to be on the known list of JHOVE, then pass through JHOVE to extract technical metadata.
- These extracted technical metadata useful for automatic verification purposes.
- Examples include image resolution, format version numbers, creation dates, font information, etc.

Agenda

- Background
- Format Identification Tools
- Experiments
- Analysis
- Related Work
 - Summary

Related Work

- GDFR: Global Digital Format Registry
 - Distributed and replicated registry of format information
 - Allow the registration and discovery of digital formats for the long term
 - Collaboration of Harvard University Library and OCLC
 - <u>http://www.gdfr.info</u>
- FOCUS: Format Curation Service at the University of Maryland
 - Main component is Format Identifier (Fider)
 - Registry Global Digital Format Registry (GDFR) implemented using LDAP
 - https://wiki.umiacs.umd.edu/adapt/index.php/Focus:Main

Related Work (2)

- PERPOS: Presidential Electronic Records Pilot System at Georgia Technology University
 - software tools to support the OAIS functionalities
 - http://perpos.gtri.gatech.edu
- Metadata Extract Tool from National Library of New Zealand
 - http://www.natlib.govt.nz/services/get-advice/digitallibraries/metadata-extraction-tool
- AIHT: Automated Preservation Assessment of Heterogeneous Digital Collections bys Stanford University
- The University of London Computer Centre issued a report to compare DROID, JHOVE, and AIHT:
 - Assessment of File Format Testing Tool.
 http://www.ulcc.ac.uk/uploads/media/DAAT_file_format_tools_report.
 .pdf.
 - Very good qualitative and functional analysis
- Other Projects?

Summary

- File Identification and Validation important step in Ingest Process.
- Performance study of Jhove and DROID.
- Optimal approach leveraging both tools.
- Monitor future progress of other tools.
- Looking forward to Jhove 2.

Thank You

http://www.archives.gov/era

For any comments or questions, please <u>mailto:</u> <u>quyen.nguyen@nara.gov</u>